The connected Vietoris powerlocale

نویسنده

  • Steven Vickers
چکیده

The Vietoris powerlocale V X is a point-free analogue of the Vietoris hyperspace. In this paper we introduce and study a sublocale V X whose points are those points of V X that (considered as sublocales of X) satisfy a constructively strong connectedness property. V c is a strong monad on the category of locales. The strength gives rise to a product map × : V X × V Y → V (X × Y ), showing that the product of two of these connected sublocales is again connected. If X is locally connected then V X is overt. In the case where X is the localic completion Y of a generalized metric space Y , the points of V Y are characterized as certain Cauchy filters of formal balls for the finite power set FY with respect to a Vietoris metric. The results are applied to the particular case of the point-free real line R, giving a choice-free constructive version of the Intermediate Value Theorem and Rolle’s Theorem. The work is constructive in the sense of topos-validity with natural numbers object. Its geometric aspects (preserved under inverse image functors) are stressed, and exploited to give a pointwise development of the point-free locale theory. The connected Vietoris powerlocale itself is a geometric construction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructive points of Powerlocales

Results of Bunge and Funk and of Johnstone, providing constructively sound descriptions of the global points of the lower and upper powerlocales, are extended here to describe the generalized points and proved in a way that displays in a symmetric fashion two complementary treatments of frames: as suplattices and as preframes. We then also describe the points of the Vietoris powerlocale. In eac...

متن کامل

Modal logic and the Vietoris functor

In [17], Esakia uses the Vietoris topology to give a coalgebra-flavored definition of topological Kripke frames, thus relating the Vietoris topology, modal logic and coalgebra. In this chapter, we sketch some of the thematically related mathematical developments that followed. Specifically, we look at Stone duality for the Vietoris hyperspace and the Vietoris powerlocale, and at recent work com...

متن کامل

Generalized powerlocales via relation lifting

This paper introduces an endofunctor VT on the category of frames, parametrized by an endofunctor T on the category Set that satisfies certain constraints. This generalizes Johnstone’s construction of the Vietoris powerlocale, in the sense that his construction is obtained by taking for T the finite covariant power set functor. Our construction of the T -powerlocale VTL out of a frame L is base...

متن کامل

Vietoris-Rips Complexes of Planar Point Sets

Fix a finite set of points in Euclidean n-space En, thought of as a point-cloud sampling of a certain domain D ⊂ En. The VietorisRips complex is a combinatorial simplicial complex based on proximity of neighbors that serves as an easily-computed but high-dimensional approximation to the homotopy type of D. There is a natural “shadow” projection map from the Vietoris-Rips complex to En that has ...

متن کامل

Approximation theorems for fuzzy set multifunctions in Vietoris topology. Physical implications of regularity

n this paper, we consider continuity properties(especially, regularity, also viewed as an approximation property) for $%mathcal{P}_{0}(X)$-valued set multifunctions ($X$ being a linear,topological space), in order to obtain Egoroff and Lusin type theorems forset multifunctions in the Vietoris hypertopology. Some mathematicalapplications are established and several physical implications of thema...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008